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DIONISOS
Dynamics of IONic Implantation

& Sputtering On Surfaces

In-situ, real-time 
Ion beam diagnostics
 of Erosion, deposition
& hydrogen retention

Steady-state plasma
exposure for

 Fusion Materials

+
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What DIONISOS brings to PFC research

1) Steady-state exposure of PFC materials to fusion-like plasmas &

2) In-situ ion beam surface analysis WITHOUT removal of the sample

but that is only the overall description

• Because the DIONISOS plasma has a ne, Te profile in radius, and
the ion beam analysis is spatially resolved one simultaneously obtains

Flux, fluence, ion energy & temperature dependence on ONE sample.

Radial net erosion/deposition profiles caused by sputtering and transport.
H/D retention, migration & release in the materials and deposited films.

• Plus, dynamic surface effects in the presence of a plasma.

• Goal: A laboratory facility that can provide both fundamental PSI data &
Replicate the complicated exposure history of materials in a fusion
experiment and measure its effects on the material.
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Our 1.7 MV tandem ion accelerator provides non-destructive,
depth-resolved diagnosis of material surfaces:

e.g. H/D/T retention, erosion, material mixing, isotope tracing

• Range in materials
~ 1-10 microns.

• Low current =
non perturbing.

• Spectra of scattered /
created particles
+
Known slowing down
& cross sections
=
Depth resolution.

C-Mod tile

1 µA, 3 MeV He 
ion beam spot

• Variety of techniques
with different uses

RBS: element i.d.
NRA: isotope i.d.
ERD: H/D/T/He
PIGE: Deep
isotope detection
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Helicon source in solenoid B field provides
steady-state plasma exposure

• Cooled RF antennae external
to quartz vacuum tube

Rapid plasma turn on / off.

Minimize vacuum thermal
loading.

• Parameters:
PRF, 13.56 MHz = 0.1 - 5 kW
B = 300 - 1000 G
Plasma Diameter = 40 mm

antennae

coil

Deuterium plasma
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Cylindrical plasma is extracted into an
“Exposure chamber” along magnetic field.

• Profiles:
Flux, ne, : r ~ 18 mm
Te: ~ 3- 6 eV

Argon plasma

Exposure
chamber

source
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Cylindrical plasma is extracted into an
“Exposure chamber” along magnetic field.

• Profiles:
Flux, ne, : r ~ 18 mm
Te: ~ 3- 6 eV

• Large range of flux densities
available

i ~ 1019 - 1022  ions s-1 m-2

Argon plasma
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DIONISOS features flexible control of
material exposure conditions

• Copper heat sink with 180 degree rotation.
Accommodates 10x10 cm sample.

Easy access for sample replacement.

Flexible beam analysis geometry.

• Plasma ion bombardment control
Biasing up to 500 V, 10 A
to set incident ion energy

• Active temperature control
Forced water or air cooling.

Resistive heating for push/pull T control.

Adaptable mechanical attachments for heat
conduction to Cu heat sink.

Infrared thermography of surface.

10x10 cm Mo plate

attachment
bolts

Backside of Cu heat sink
viewed through rear door
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Exposure chamber designed for optimal
surface and plasma diagnostic access.

• Exposure chamber:
> 15 ports viewing
beam-target or plasma.

• NRA, RBS, ERD &
PIGE ion beam analysis
available
simultaneously.

• Large solid-angle
gamma detector placed
in rear entrant tube
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Putting it all together
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Putting it all together
Beam can be positioned at any location
on material sample for surface analysis

• Upstream X-Y electrostatic steering & quadrupole shaping coils.

• Differential pumping protects upstream accelerator components.

• Beam position control ~ 2 mm << plasma diameter.

NRA detector

beam
spot

D Plasma & 3He 3.5 MeV beam
On glass alignment target



12Whyte, PFC Meeting Feb 2006

Real-time, in-situ ion beam surface analysis
during plasma exposure

IR footprint of beam on glass IR footprint of plasma on glass

• No significant perturbation to MeV ion trajectories or
energy by plasma environment or solenoid magnetic field.
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Since Dec. 2005
First physics experiments on DIONISOS:

Deuterium retention in Molybdenum

• Motivated by D retention in C-Mod.

• Initial study in collaboration with
UCSD (APS-DPP 05):

D plasma exposure at PISCES.
NRA detection of D at Wisconsin

• Highlights
Strong T dependence but not
monotonic?
NRA found D trapped at > 5
microns into sample, limit of
detection.
Apparent dependence of Boron or
tile type, but unclear.
1 % Neon seeding enhanced deep
D trapping. Effect of vacancy
production?
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Deuterium plasma exposures of
Molybdenum on DIONISOS

• D plasma
Prf  < 1 kW, B = 500 G.

Central: Te ~ 5 - 6 eV

,r,plasma ~ 18 mm
Magnetized: D+ ~ 5 mm << i-n

Peak incident flux density:
0.5 - 2 x1021 s-1 m-2

• Exposure conditions
Vbias ~ Eion = 100 V

No vacancy production.

No sputtering.

Mo plates cleaned, but not annealed
before exposure.

Two Mo plates
 from C-Mod

1: T ~ 300-700 K 

2: T ~ 300 K

High purity
Mo foil:

 T ~ 400 K
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3He Nuclear Reaction Analysis (NRA)
Deuterium density profiles in Mo

• Parameters:
E3He = 0.5 - 4.5 MeV

I3-He ~ 1- 2 µA

Depth resolution: ~ 0.5 µm

Range ~ 3-5 µm

Sensitivity: D/Mo > 10 appm

• Surface impurity checks
NRA:  Carbon, Boron

ERD:  surface H / D
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25 micron Mo foil at 370 K:
Deuterium becomes trapped progressively

deeper into Mo with plasma exposure

• NRA data taken after each
plasma exposure.

• Natural trap concentration
~ 50 appm.

• Not diffusion limited:
depth scale ~ 20 microns
in 1000s at 370 K,

So appears that trapping
is evolving

• Trap mechanism?
No vacancies produced.

Bubbles?

NRA D profiles with increasing
D plasma exposure
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Mo foil at 370 K:
 Retention increases linearly with fluence

 Retention rate ~ 0.05% per D ion

• Linear increase in
retained D with fluence
like C-Mod

• But retention rate ~x10
lower than inferred from
C-Mod.

• Accurate D accounting
becomes difficult since D
surpassing NRA depth
limit ~ 3 microns.

0

2E+20

4E+20

6E+20

8E+20

1E+21

0 5E+23 1E+24 1.5E+24 2E+24

Implanted Fluence (D/m2)

R
e
ta

in
e
d

 f
lu

e
n

c
e
 (

D
/m

2
) Data

0.05%
retention rate

Haasz: 1
keV/D at 300K

Haasz, scaled
to 100 eV



18Whyte, PFC Meeting Feb 2006

Mo plate at RT:
Retention increases as square root of fluence

Suggesting diffusion limited trap process
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Overall retention rates approach those found
on C-Mod, but remain systematically lower

Effects of flux, boron & temperature to be investigated
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D depth retention profiles vary widely with
exposure conditions & material.

Indications of deep trapping in many cases
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Mo plate at RT with plasma on:
Dynamic inventory of deuterium is ~ doubled

during plasma exposure

 r = 0 mm
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Mo plate at RT with plasma on:
NRA depth profiles show the dynamic
deuterium concentrated near surface
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Mo plate at RT with plasma on:
Dynamic inventory of deuterium accurately

measures D surface recombination rate.

• Dynamic D inventory builds up due to
finite rate for surface recombination
rate -->Coefficient: R(T) m4/s
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More dynamics:
Isotope effects from H bombardment  &

 D retention during re-exposure to D

• H plasma exposure results in
depletion of D retained from
previous D plasma exposure.

• Dynamic measurements:

nD --> R = 5x10-32 m4s-1 at
370K

Re-exposure to D plasma
filled back D, first near
surface then deep to detection
limit.

Relevant to isotopic plasma
recovery of Tritium 0.0001
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What DIONISOS brings to PFC research
We look forward to collaborations

with the PFC community

1) Steady-state exposure of PFC materials to fusion-like plasmas &

2) In-situ ion beam surface analysis WITHOUT removal of the sample

but that is only the overall description

• Because the DIONISOS plasma has a ne, Te profile in radius, and
the ion beam analysis is spatially resolved one simultaneously obtains

Flux, fluence, ion energy & temperature dependence on ONE sample.

Radial net erosion/deposition profiles caused by sputtering and transport.
H/D retention, migration & release in the materials and deposited films.

• Plus, dynamic surface effects in the presence of a plasma.

• Goal: A laboratory facility that can provide both fundamental PSI data &
Replicate the complicated exposure history of materials in a fusion
experiment and measure its effects on the material.


